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Pain is a critical component hindering recovery and regaining of
function after surgery, particularly in the elderly. Understanding the
role of pain signaling after surgery may lead to novel interventions
for common complications such as delirium and postoperative
cognitive dysfunction. Using a model of tibial fracture with intra-
medullary pinning in male mice, associated with cognitive deficits,
we characterized the effects on the primary somatosensory system.
Here we show that tibial fracture with pinning triggers cold
allodynia and up-regulates nerve injury and inflammatory markers
in dorsal root ganglia (DRGs) and spinal cord up to 2 wk after
intervention. At 72 h after surgery, there is an increase in activating
transcription factor 3 (ATF3), the neuropeptides galanin and neuro-
peptide Y (NPY), brain-derived neurotrophic factor (BDNF), as well
as neuroinflammatory markers including ionized calcium-binding
adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and
the fractalkine receptor CX3CR1 in DRGs. Using an establishedmodel
of complete transection of the sciatic nerve for comparison, we
observed similar but more pronounced changes in these markers.
However, protein levels of BDNF remained elevated for a longer
period after fracture. In the hippocampus, BDNF protein levels
were increased, yet there were no changes in Bdnf mRNA in the
parent granule cell bodies. Further, c-Fos was down-regulated in
the hippocampus, together with a reduction in neurogenesis in the
subgranular zone. Taken together, our results suggest that
attenuated BDNF release and signaling in the dentate gyrus may
account for cognitive and mental deficits sometimes observed
after surgery.
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Fractures represent a common clinical problem and remain a
leading cause of morbidity, in particular among the rapidly

growing elderly population requiring surgery (1). Although
generally well-tolerated, orthopedic surgery is traumatic and may
lead to poor functional outcomes, including mortality and pro-
longed recovery and rehabilitation, especially in frail aged pa-
tients with concurrent medical problems (2, 3).
Postoperative pain, not rarely developing into chronic pain, is

a common disabling complication after surgery, which dramati-
cally reduces quality of life and represents a major burden for
both patients and society. Poorly managed postoperative pain is
a leading cause of acute confusional state (delirium) (4), which
affects more than 50% of patients undergoing hip-fracture repair
(5). Notably, 10 to 26% of surgical patients retain subtle but
persistent learning and memory deficits, referred to as post-
operative cognitive dysfunction (POCD) (6), which results in
further morbidity and greater risks for permanent dementia (7).
Cognitive impairment is a critical component of the pain expe-
rience (8), and patients with chronic pain also suffer from deficits
in learning and memory (9). Recent studies have independently

shown hippocampal abnormalities in animal models of neuro-
pathic pain and reduced hippocampal volume in elderly patients
with chronic pain (10–12). Moreover, changes in regional brain
volume, including hippocampal and cortical atrophy, have also
been related to POCD (13), although the etiology of this phe-
nomenon remains poorly understood.
Tibial fracture is an established experimental rodent model

to study clinically relevant orthopedic procedures (14) and a
variety of clinical pathologies ranging from postoperative pain,
complex regional pain syndrome, and POCD to bone cancer
(15–19).
After fracture, nociceptive sensations have been associated

with excessive substance P signaling and exaggerated regional in-
flammatory responses leading to the increased release of systemic
proinflammatory cytokines such as tumor necrosis factor alpha and
interleukin 1 beta (18, 20, 21). Similar changes in proinflammatory
cytokines and activation of nuclear factor κB signaling in macro-
phages have been associated with changes in blood–brain barrier
permeability, hippocampal neuroinflammation, and subsequent
cognitive impairment in mice after tibial fracture (22–24). However,
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whether there are neuronal substrates for pain and cognitive
impairment after tibial fracture remains largely unknown.
Here we therefore characterized the effects of tibial fracture

with intramedullary pinning on the primary somatosensory sys-
tem, including dorsal root ganglia and spinal cord, by combining
pain behavioral tests with histochemical analyses of an array of
markers for nerve injury, including neuropeptides, brain-derived
neurotrophic factor (BDNF), and c-Fos for a period of 2 wk
postoperatively. For comparison, the same markers were assessed
after a complete transection (axotomy) of the sciatic nerve. We
also analyzed these markers in the brain with special focus on the
hippocampal formation to explore a possible relationship between
peripheral surgery, pain, and cognitive deficits. Taken together,
our results show major and distinct changes of pain-related
markers at the spinal level and in the hippocampal formation,
providing a new view of the complex and widespread effects in-
duced by tibial fracture with pinning.

Results
Tibial Fracture with Pinning Induces Cold Allodynia. Neuropathic
pain resulting from injury to peripheral nerves is a common clin-
ical consequence of surgery (15). In animal models, neuropathic
pain is characterized by changes in tactile, cold allodynia, and
mechanical hypersensitivity, as induced for example by partial
nerve injury to the sciatic nerve (spared nerve injury) (25). To test
whether tibial fracture with pinning triggers pain behavior, we
performed von Frey hair (nonnoxious tactile stimulus), pinprick
(noxious mechanical stimulus), and acetone (cold stimulus)-
induced behavioral sensitization tests. Mice showed robust cold
allodynia 3 d after orthopedic surgery, which lasted for at least
2 wk (Fig. 1A). However, neither mechanical hypersensitivity nor
tactile allodynia was observed until the end of 2 wk (Fig. 1A). In
fact, no response to the cutoff value of von Frey hair stimulus was
observed ipsilaterally. Furthermore, the sham group (no bone
pinning or fracture) also developed modest cold allodynia but
neither tactile allodynia nor mechanical hypersensitivity (Fig. 1B).

Nerve Injury in Tibial Fracture with Pinning Compared with Axotomy.
To estimate the severity of nerve damage, we compared the
expression of several markers in neurons, such as activating tran-
scription factor 3 (ATF3), the neuropeptides galanin and neuro-
peptide Y (NPY), and the growth factor BDNF as well as the three
glial markers glial fibrillary acidic protein (GFAP) (astrocytes),
ionized calcium-binding adaptor molecule 1 (Iba1) (macrophages/
microglia), and the fractalkine receptor CX3CR1 (microglia), in
dorsal root ganglia (DRGs) and spinal cord with the effects of
axotomy, a classical model of “severe” peripheral nerve injury.

Neuronal Markers. ATF3 was usually not detected, or only occa-
sionally, in control DRG neurons (Fig. 2 A and B). ATF3 was up-
regulated in 35 ± 10% of neuron profiles (NPs) as early as 24 h
after tibial fracture with pinning and up to 45 ± 9% of NPs after
3 d, but dropped to 13 ± 4% after 2 wk (Fig. 2 A and E). In
axotomized DRGs, 62 ± 3% of NPs were ATF3-immunoreactive
(IR) after 24 h and up to 76 ± 5% after 3 d, and this level was
essentially maintained at 2 wk (63 ± 9%) (Fig. 2 B and E). Motor
neurons in the spinal ventral horn started to express ATF3 24 h
after injury in both orthopedic and axotomy models, remaining
elevated at least for 2 wk, although less so after fracture (Fig. 2 C
and D). In the tibial fracture sham group, a small population of
ATF3-IR neurons was also observed in DRGs (9 ± 4%) (Fig. 2F)
but not in motor neurons (Fig. 2G). Furthermore, ATF3-like
immunoreactivity (LI) was observed in a number of small nuclei
(rod-shaped) tightly surrounded by GFAP-LI, presumably in
Schwann cells, 2 wk after axotomy (Fig. 2 H–J). This was also
observed after tibial fracture with pinning, but in fewer cells
(Fig. 2K).

A basal expression level of galanin-LI was found in 5 to 10%
of DRG neurons. Three days after orthopedic surgery, the pro-
portion of galanin-IR NPs was increased ipsilaterally from 14 ±
3% to 48 ± 8%, but dropped to 16 ± 4% after 2 wk (Fig. 3 A and
G). After axotomy, the levels of galanin-LI were increased after
3 d and remained up-regulated for 2 wk, although slightly reduced
(3 d 63 ± 3% vs. 2 wk 49 ± 2%) (Fig. 3 B and G). In the spinal
dorsal horn, there was an increase of galanin-LI, also in motor
neurons (Fig. S1 A–D). The increase in the dorsal horn was evi-
dent in the deeper layers, and was stronger after axotomy than
tibial fracture as measured both at 3 d and 2 wk (Fig. S1 A and B).
NPY is challenging to detect in DRG neurons with immuno-

histochemistry (IHC). The expression of NPY was slightly increased
in DRGs 3 d after tibial fracture with pinning (10 ± 2%) and was
maintained for at least 2 wk (7 ± 3%) (Fig. 3 C and H). The in-
crease of NPY-IR NPs after axotomy was also long-lasting but
much stronger after 2 wk (3 d 15 ± 5% vs. 2 wk 37 ± 9%) (Fig. 3 D
andH). In the spinal cord, a clear increase in NPY-LI could be seen
in motor neurons, both after orthopedic surgery and axotomy, but
no evident changes were observed in the dorsal horn (Fig. S1 E–H).
For BDNF, the expression was increased in DRG neurons 3 d

after tibial fracture with pinning and maintained for 2 wk, even if
slightly reduced (3 d contralateral 26 ± 5% vs. ipsilateral 52 ±
5% and 2 wk contralateral 20 ± 2% vs. ipsilateral 36 ± 5%) (Fig.
3 E and I). Also after axotomy, BDNF was up-regulated after 3 d
(contralateral 26 ± 6% vs. ipsilateral 39 ± 2%) (Fig. 3 F and I),
but this up-regulation did not persist after 2 wk, and in fact was
reduced below controls (contralateral 28 ± 5% vs. ipsilateral
17 ± 6%) (Fig. 3 F and I), contrasting the effect of orthopedic
surgery (Fig. 3 E and I). Morphometric analysis of BDNF-IR
neurons showed a slight effect in the shift of small- to large-sized
neurons after axotomy (Fig. S2 A and B), similar to a previous

Fig. 1. Cold allodynia triggered by unilateral tibial fracture. (A) Mice with
fracture do not develop tactile allodynia or mechanical hypersensitivity after
surgery but have exaggerated responses to cold stimulus from day 3 (3d),
lasting for at least the 14 d (14d) that were recorded in this study. (B) Mice
processed for sham surgery also develop mild cold allodynia. BL, baseline;
Contra, contralateral; Ipsi-, ipsilateral. Data for tactile allodynia from von Frey
filament tests (nonparametric data) are represented as box and whisker plots
(analyzed with unpaired Mann–Whitney test), whereas withdrawal durations
for pinprick and acetone stimuli are represented as mean ± SD. Experimental
group, n = 5–9; sham group, n = 6. **P < 0.01; analyzed with unpaired t test.
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study in rat DRGs (26), but this shift was not observed following
tibial fracture. In the spinal dorsal horn, BDNF-LI was in-
creased in both models, although stronger after 3 d than 2 wk
(Fig. S2 C and D).

Glial Markers. After tibial fracture with pinning, Iba1 was in-
creased (intensity of Iba1-LI) in DRG microglia/macrophages
3 d after surgery (contralateral 1.00 ± 0.22-fold vs. ipsilateral
1.75 ± 0.63-fold) with sustained activity even after 2 wk (con-
tralateral 1.06 ± 0.36-fold vs. ipsilateral 2.14 ± 0.48-fold) (Fig. S3 A
and C). However, the activation was more evident after axotomy
(3 d contralateral 1.00 ± 0.43-fold vs. ipsilateral 5.26 ± 0.71-fold and

2 wk contralateral 1.18 ± 0.33-fold vs. ipsilateral 4.73 ± 1.21-fold)
(Fig. S3 B and C). In the dorsal horn, microglial activation was
transient after tibial fracture with pinning but long-lasting after
axotomy (Fig. S4 A and B). A similar pattern was also observed in the
ventral horn, but exclusively around motor neurons (Fig. S4C andD).
The up-regulation of GFAP-LI in satellite glia cells of DRGs

was observed 3 d and 2 wk after orthopedic surgery (Fig. S3D),
again more profound after axotomy than tibial fracture with
pinning (Fig. S3 D and E). Up-regulation of GFAP-LI was also
observed in Schwann cells both after tibial fracture with pinning
and axotomy (Fig. S3 D and E). A modest astrocyte activation
was seen in the dorsal horn and around motor neurons after

Fig. 2. Activation of ATF3 in DRGs after unilateral tibial fracture. (A) Expression of ATF3 (green) is induced in DRGs 24 h after tibial fracture and declines after
2 wk, whereas contralateral DRGs do not (or very rarely) express ATF3. (B) Axotomy induces ATF3 expression in a larger population of DRG cells, essentially
neurons, after 24 h, and is maintained for at least 2 wk. (C and D) Motor neurons in the spinal ventral horn start to express ATF3 at 24 h, lasting for at least
2 wk in both tibial fracture and axotomy models. (E) Quantification of the number of ATF3-IR neuronal nuclei after tibial fracture and axotomy. (F and G) In
the sham group, ATF3 is induced in a small population of DRG neurons but not in spinal motor neurons (3 d). (H) Overview of double labeling with ATF3
(green) and GFAP (red) in DRGs 3 d and 2 wk after axotomy. (I and J) Overview of weakly activated ATF3 (green) in Schwann/satellite cells (indicated by
arrowheads) after 2 wk, and high magnification of double labeling of ATF3 (green) and GFAP (red), where arrowheads indicate coexpression. (K) Overview of
ATF3 (green) in DRGs after 2 wk of tibial fracture (arrowheads indicate a few rod-shape nuclei, as in I and J). Counterstaining with propidium iodide (blue) (A–D, F,
and G). n = 37; n = 4, 5, 4, and 5 for axotomy groups (different time points from shortest to longest, respectively); n = 3, 6, 6, and 4 for tibial fracture groups. Data
are represented as mean ± SD. **P < 0.01; analyzed with unpaired t test. n.s., no significant difference. [Scale bars, 100 μm (A and B), 50 μm (C and D), 100 μm (F),
50 μm (G), 100 μm (H, I, and K), and 20 μm (J).]
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tibial fracture with pinning (Fig. S5 A and C), with a somewhat
more robust activation after axotomy (Fig. S5 B and D). The
latter response was stronger at 2 wk than 3 d (Fig. S5 B and D).
The fractalkine receptor (CX3CR1), mediating inflammatory

and neuropathic pain (27, 28), was up-regulated in DRGs (Fig.

S6 A–E) and spinal dorsal horn (Fig. S6 F–J) 3 d after tibial
fracture with pinning, coinciding with the expression of Iba1
(Figs. S3A and S4 A and B).
For a direct and convenient comparison between orthopedic

surgery and axotomy, detailed quantification of the neuronal

Fig. 3. Increased expression of galanin, NPY, and BDNF in DRG neurons after unilateral tibial fracture. (A–D) Both galanin- (A and B) and NPY- (C and D) LIs
show increased expression in DRG neurons, more so after axotomy than fracture. The quantification of neuron profiles is shown in G and H, respectively.
(E and F) BDNF-LI is increased in DRG neurons after fracture but only weakly increased after 3 d of axotomy and not at all after 2 wk, as shown by the
quantification in I. Neuronal markers are in green; counterstaining with propidium iodide is in blue. n = 19; n = 4 and 5 for axotomy groups; n = 4 and 6 for
tibial fracture groups. Data are represented as mean ± SD. *P < 0.05, **P < 0.01; analyzed with unpaired t test. (Scale bars, 100 μm.)

Fig. 4. Modulation of c-Fos expression in the spinal cord and hippocampal formation after unilateral tibial fracture. (A) Robust activation of c-Fos in the superficial
layers (laminae I and II) of the dorsal horn peaking at 6 h after fracture and declining to basal levels after 72 h. The activation of c-Fos in deep layers of the spinal cord
appears increased bilaterally, but significance is reached only at 24 h compared with the contralateral side. (B and C) c-Fos expression in granule cells of the dentate
gyrus is decreased transiently (6, 24 h) after tibial fracture, returning to basal levels after 72 h, as substantiated by quantification. Only the number of c-Fos–positive
nuclei was counted, without considering intensity. Projection pictures in C are produced from 12- to 14-μm z-stack scanning with an interval of 2 μm. Con, control; GCL,
granule cell layer; PI, propidium iodide; TF, tibial fracture. n = 14; n = 3 for the control group; n = 4 for both 6- and 24-h injury; and n = 3 for 72-h injury. Data are
represented as mean ± SD. *P < 0.05, **P < 0.01; unpaired t test was applied for c-Fos in the spinal cord, and one-way ANOVA followed by Dunnett’s multiple
comparison test was applied for c-Fos in the hippocampus with tibial fracture. [Scale bars, 200 μm (A and B) and 20 μm (C).]
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Fig. 5. BDNF and neuropeptide expression in the brain after unilateral tibial fracture. (A) Overview micrographs of dynorphin (Dyn; green), NPY, chole-
cystokinin (CCK), and enkephalin (ENK) in the hippocampus, with emphasis on the polymorph layer of the dentate gyrus (PoDG) and stratum lucidum (SLu) of
CA3 from control and mice with tibial fracture (24 h). Arrowheads indicate mossy fibers in SLu. (B) Overview and high-magnification micrographs show
increased levels of BDNF-LI (green) in the PoDG and SLu of CA3 from the hippocampal formation at different time points after tibial fracture. Boxed rect-
angles show PoDG and SLu in CA3. High-magnification micrographs are produced from z-stack scanning with an interval of 2 μm (projected from nine series
pictures). GrDG, granular layer of the DG; Py, pyramidal layer. (C) Quantification of BDNF-LI in the hippocampus after tibial fracture. (D) Dark-field micro-
graphs of a [35S]UTP-labeled Bdnf antisense probe in the dentate gyrus after tibial fracture. Quantification of silver particles for Bdnf mRNA is represented by
a plot graph. (E) Quantification of Bdnf transcript levels in the hippocampal formation (RT-qPCR) shows the fold changes of Bdnf mRNA levels after tibial
fracture. (F) Cresyl violet staining micrograph shows central amygdaloid (Ce), basolateral (BLA), and basomedial (BMA) nuclei and piriform cortex (Pir). Dark-
field micrographs show an increased signal for a [35S]UTP-labeled Bdnf antisense probe, mainly in the BLA, 24 h after tibial fracture (F2 and F3). Confocal
pictures show increased BDNF-IR neurons in the Ce and BLA (F4 and F5). (G) Overview micrographs of BDNF-LI in the dentate gyrus 6 h after axotomy, and
quantification of BDNF-LI. (H) Overviews show DCX-LI (red) in the dentate gyrus 24 h after tibial fracture. Boxes show projection micrographs from control
and 24 h after tibial fracture. Quantification of DCX+ neurons shows the number of cell bodies per mm from one airy unit pinhole of 10× objective. The high-
power micrographs are projected from z-stack scanning of 12-μm-thick tissue with an interval of 2.0 μm. Counterstaining with propidium iodide (blue) (A, B,
and H). n = 38; n = 4 and 4 for control and axotomy groups; n = 3–4 (n = 14) for control and tibial fracture groups with different time points for IHC; n = 4 and
4 for control and tibial fracture 24 h for qPCR; and n = 2 (n = 8) for control and tibial fracture groups with different time points for ISH. Data are represented
as mean ± SEM. *P < 0.05, **P < 0.01; one-way ANOVA followed by Dunnett’s multiple comparison test was applied for the intensity of both BDNF and DCX in
the hippocampus with tibial fracture. Bdnf qPCR data and the intensity of BDNF in the hippocampus after axotomy were analyzed with unpaired t test. [Scale
bars, 500 μm (A and B), 100 μm (B, Insets), 200 μm (D), 200 μm (F), 500 μm (G), 200 μm (H), and 50 μm (H, Insets).]
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and glial markers in DRGs is summarized in Table S1 (3 d
and 2 wk).

c-Fos in the Spinal Cord and Hippocampal Formation. c-Fos, an im-
mediate-early transcription factor (29), was early on shown to be
“induced” in the dorsal horn following sensory stimulation (30).
After tibial fracture with pinning, c-Fos activation occurred
unilaterally in the superficial layer of the spinal dorsal horn from
6 to 24 h, declining to basal levels after 3 d (Fig. 4 A and D).
However, the activation of c-Fos in deep layers of the spinal cord
(laminae III–V) gradually increased on both contra- and ipsi-
lateral sides. However, the increase of c-Fos–positive nuclei in
the ipsilateral side was only significant at 24 h after fracture
compared with the contralateral side (Fig. 4 A and E).
c-Fos is dramatically up-regulated in the hippocampus in re-

sponse to seizure activity (31). In contrast, in the present model,
c-Fos was bilaterally decreased in hippocampal cell layers as early as
2 h after surgery. In the dentate granule cellular layer, c-Fos was
decreased 6 h after tibial fracture with pinning, with a gradual return
to basal levels after 3 d (Fig. 4 B, C, and F). This also contrasts with
the acute activation in the spinal cord in the present study.

BDNF and Doublecortin in the Hippocampal Formation. Our de-
scription of the distribution of BDNF protein (IHC) (32) (same
Amgen antibody as used in the present study) and transcript (in
situ hybridization; ISH) (33) confirms and is in agreement with
early histochemical analyses. After orthopedic surgery, BDNF-
LI was distinctly, bilaterally, and transiently increased in the
polymorph layer and stratum lucidum of CA3 (mossy fibers), as
well as in many other brain regions, such as the subnuclei of the
amygdaloid complex (Fig. S7A). A similar pattern was seen after
incubation with a second primary antibody (mAb#9), which has
been thoroughly characterized and shown to recognize both ma-
ture BDNF and proBDNF (34). However, classical neuropeptides,
such as dynorphin and NPY, both known to be strongly up-regu-
lated by seizure activity (35), were not modulated by tibial fracture
with pinning (Fig. 5A and Fig. S7 B–D). This was true also for two
further neuropeptides, cholecystokinin and enkephalin (Fig. 5A).
An apparent increase in BDNF-LI was already seen after 6 h

(although not significant, P = 0.06), peaking at 24 h, and then
almost returning to control levels after 3 d (fold changes: control,
1.00 ± 0.16; 6 h, 2.92 ± 0.82; 24 h, 5.85 ± 0.73; 72 h, 1.38 ± 0.24)
(Fig. 5 B and C). However, Bdnf mRNA levels in the dorsal
hippocampal formation were not changed when analyzed either
by ISH (pyramidal cells, granule cells) at any time point (2, 6,
24 h) (Fig. 5D) or by RT-quantitative (q)PCR (hippocampal
samples) at the peak of BDNF protein content (fold changes:
control, 1.02 ± 0.13; 24 h, 0.82 ± 0.05) (Fig. 5E). This result was
confirmed in a second ISH experiment measuring Bdnf mRNA
levels in all main hippocampal layers (CA1, CA3, granule cells)
on X-ray film (Fig. S7E).
An increase in BDNF-LI was also observed in the central

amygdala (mainly nerve endings), as was an increased number of
BDNF-IR neurons in the basolateral nucleus, an increase also
seen in many other brain regions (Fig. 5F and Fig. S7A). How-
ever, in contrast to the granule cells/mossy fibers in the dentate
gyrus, both Bdnf mRNA and protein levels were increased in the
basolateral nucleus (Fig. 5F, F2 and F3 for Bdnf mRNA; Fig. 5F,
F4 and F5 show BDNF IHC for comparison). An acute increase
of BDNF-LI in mossy fibers was also found after axotomy,
peaking at 6 h (fold changes: control, 1.00 ± 0.10; 6 h, 4.09 ±
0.27) (Fig. 5G), but returned to basal levels already after 24 h.
Thus, changes in BDNF protein were in this case more prolonged
after tibial fracture than axotomy. Furthermore, the number of
doublecortin (DCX)-stained cells and their dendritic processes
(IHC) was significantly reduced in the dentate gyrus 24 h after
tibial fracture with pinning, returning to control levels after 3 d
(Fig. 5H).

Discussion
For many decades, axotomy and various nerve injury models
have been used to study associations between pain-related be-
haviors and neurochemical changes in, for example, neuropep-
tide expression at the spinal level. However, from a clinical point
of view, bone fracture is highly relevant, especially in the growing
elderly population. In the present study, we compared a model of
orthopedic surgery with a classical nerve injury (axotomy, com-
plete transection of the sciatic nerve) and evaluated changes in
pain behavior up to 2 wk after experimental intervention. Ex-
pression of a variety of pain-related and other markers was also
analyzed in the somatosensory system and the hippocampal
formation using IHC and ISH.
The main findings of this study are that tibial fracture with

pinning causes the following: (i) cold allodynia and changes in
nerve-injury markers at the spinal level [these changes re-
capitulate, although to a lesser degree, those seen in the parallel
experiments with axotomy. This is likely correlated with the ex-
tent of nerve damage to the axons of DRG neurons. Moreover,
these findings suggest that, for example, various “pain protective”
and/or “regenerative” roles described, for example, for galanin
and NPY, in response to nerve injury (36) also are active after
tibial fracture]; (ii) expression of BDNF in DRG neurons after
tibial fracture remaining elevated after 2 wk, versus having de-
creased in the axotomy model at this time point; (iii) acute ac-
tivation of c-Fos in the spinal dorsal horn but decreased c-Fos
levels in the hippocampal dentate gyrus; and (iv) a strong and
acute increase of BDNF protein levels in hippocampal mossy fi-
bers, paralleled by unchanged Bdnf mRNA in the parent granule
cell bodies and a pronounced decrease in staining for DCX, a
microtubule-associated protein expressed by neuronal precursor
cells and used as a marker for neurogenesis (37). This contrasts
with the lack of effect on expression levels of four neuropeptides
(dynorphin, NPY, CCK, enkephalin) partly colocalized in the
same mossy fibers/granule cells. We interpret the results under
(iii) and (iv) to suggest an acute effect of bone fracture on BDNF
signaling, neurogenesis, and cognitive processes.
The circuitry involved remains to be defined. An example of a

possible pathway from the spinal cord to the forebrain relaying
pain could include the paragigantocellular nucleus (38) and the
noradrenergic locus coeruleus (39), which widely projects to
forebrain areas, including the hippocampal formation (40).
Noradrenergic mechanisms in pain modulation have been thor-
oughly explored (41, 42).

Development of Cold Allodynia. Postoperative pain is a major
clinical problem with a profound negative impact on patient
recovery (43). The prevalence of postoperative pain significantly
varies according to different procedures; after total hip or knee
arthroplasty, ∼6% of patients experience neuropathic, chronic
pain (44).
In this study, we investigated an effect of tibial surgery on

three different pain-related behaviors, but were only able to
detect cold allodynia during the relatively short period studied.
This type of allodynia has been described in animal pain models
(45–47) and also in patients after hand fracture (48, 49). How-
ever, the underlying mechanism(s) of cold allodynia in our model
remains unclear.
In other orthopedic surgery animal models (i.e., femoral pin

placement and fracture or fracture with casting), spontaneous,
palpation-induced nocifensive behaviors and mechanical allo-
dynia were observed (50, 51), contrasting our results where mice
did not display secondary tactile allodynia after tibial fracture with
intramedullary pinning. For example, Guo et al. (51) reported
mechanical allodynia in rats using von Frey filaments after distal
tibial fracture with a cast, but only monitored behavior at a chronic
stage (4 wk after surgery). For nocifensive behavior in a femoral
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pin placement and fracture model, Majuta et al. (50) gently and
repeatedly pressed, with thumb and forefinger, the thigh of the
fractured hind limb for 2 min. This is different from our protocol
of carrying out the von Frey filament test no later than 2 wk after
fracture, when the leg is not completely stable (50, 52, 53).

Regulation of Injury-Sensitive Molecules in DRGs.ATF3 is a classical
marker of nerve injury, as first reported by Tsujino et al. (54).
Hill et al. (55) reported that just skin incision, without substantial
nerve damage, causes an increase of ATF3, galanin, and other
injury markers; ATF3 is found in 2.9% of DRG neurons after
skin incision vs. 0.07% in controls. Up-regulation of such
markers has been described in multiple conditions, including
osteoarthritis, chemotherapy, and other noninvasive procedures,
although osteoarthritis and chemotherapy are likely to damage
nerves (56–60).
Functionally, ATF3 has been reported to enhance peripheral

nerve regeneration (61). ATF3 can also be activated in both
DRG neurons and satellite cells after i.v. administration of
paclitaxel, an antineoplastic drug (57, 62). In the latter studies,
ATF3 is first activated only in DRG neurons and then in clus-
tered satellite cells, similar to so-called nodules of Nageotte,
which represent neuronal degeneration/cell loss in DRGs (62).
Here we show that bone fracture also induces ATF3 expression
in low numbers of Schwann cells and satellite cells located in the
axon trunks within the ganglion, without clustering; however,
these effects are much more pronounced after axotomy.
The neuropeptide galanin (63), acting via three receptors,

Gal1–3 (64, 65), has also emerged as an injury marker and as an
“endogenous analgesic” (66). Galanin shows a dramatic up-
regulation in DRG neurons, mainly in the small- and medium-
sized population (67, 68), after transection of the sciatic nerve
and, as shown here, to a lesser extent following tibial fracture.
The apparently transient elevation after fracture may suggest
that the antinociceptive effect of this peptide via the Gal1 sub-
type receptor (69) also is of limited duration and could con-
tribute to extended pain sensation. Comprehensive studies by the
Wynick group have reported a trophic role of galanin via the
Gal2 receptor (70). Galanin has also been implicated in cold
allodynia, as found in our study. Intrathecal infusion of a Gal2/3
agonist can in fact augment the nociceptive response to acetone
(69). Moreover, Gal1-KO mice exhibit increased cold pain sen-
sitivity (71), also indicating involvement of this receptor, sup-
ported by a comprehensive study by Hulse et al. (72). Thus,
peripheral administration of galanin, but not of a Gal2/3 agonist,
inhibits pain induced by acetone and menthol in neuropathic and
inflammatory models, as does overexpression of galanin in
DRG neurons.
NPY (73) is not expressed in DRG neurons under normal

circumstances but is expressed abundantly in dorsal horn neu-
rons (74). However, nerve injury causes up-regulation in mainly
large, DRG neurons (75). There is evidence for involvement of
NPY in cold sensation (46, 76); for example, NPY reduces cold
hypersensitivity (77), and NPY is one of eight genes that are
regulated in DRGs by repeated cold stress (78).
BDNF (79) modulates a wide variety of functions in the pe-

ripheral nervous system, including pain (80, 81), and has a con-
siderable therapeutic potential (82). It is mainly expressed in
small- and medium-sized DRG neurons (83). BDNF is increased
in DRGs and spinal cord following peripheral inflammation, and
is in this situation considered to have pronociceptive effects at
the spinal level (84, 85). It is up-regulated by nerve injury in rat
DRGs (26), but also shows down-regulation upon long-term nerve
injury in neonatal rat DRGs (86). In contrast to inflammatory
conditions, if BDNF levels are increased by nerve injury (neuro-
pathic pain) or by exogenous administration/viral overexpression
in the spinal cord, then this growth factor has antinociceptive
effects (87, 88).

Here we report that BDNF is up-regulated after axotomy
during the early phase of nerve injury but returns back to normal
levels after 2 wk, in fact even below basal levels. However, ex-
pression of BDNF after tibial fracture remains elevated after
2 wk. Whether or not BDNF is involved in cold sensation after
tibial fracture still needs further investigation.

Modulation of BDNF in the Hippocampal Formation. BDNF is a key
signaling molecule involved in a wide range of central functions
and neuronal plasticity, including modulatory actions in the
hippocampus of relevance to learning, memory, neurogenesis,
and mood control (89–93). Memory impairment after surgery
has also been associated with reduced BDNF expression (94–97).
Conditional knockout of BDNF in the forebrain impairs hippo-
campal-dependent learning in mice (98, 99). However, BDNF
overexpression also results in working memory deficits, increased
anxiety-like traits, and seizure susceptibility (100).
Here we show distinct BDNF levels in mossy fibers, using two

independent antibodies, confirming earlier findings (32, 34, 101),
as well as a marked increase after tibial fracture. Surprisingly,
this robust increase of BDNF protein in mossy fibers (IHC) is
not paralleled by elevated Bdnf mRNA levels in granule cell
bodies giving rise to mossy fibers (ISH and RT-qPCR). This
contrasts with the results in several other brain regions, such as
the amygdala, where we found increased levels of both BDNF
protein and Bdnf mRNA in the basolateral amygdaloid nucleus,
as well as increased levels of BDNF-LI in nerve terminals in the
central amygdala. At least some of these nerve endings may
belong to the projection from the basolateral nucleus (102), but
the central nucleus also receives input from other brain regions,
such as the parabrachial nucleus (103). Thus, a connection be-
tween the cell bodies and nerve endings (shown in Fig. 5F, F4
and F5, respectively) remains to be established. Nevertheless,
this may represent a projection, where BDNF is differently
regulated compared with the dentate gyrus: The increase in
protein is paralleled by an increased transcript level. This would
support the idea that the lack of effect on mRNA levels in the
granule cell layer after fracture is not an artifact but a unique
reaction for hippocampal granular (and other) cells.
It has now been definitively shown that BDNF in mossy fibers

is stored in large dense core vesicles (LDCVs) (34) that repre-
sent the organelle from which this molecule and neuropeptides
in general are released. Our results confirm many previous
studies showing that the three peptides enkephalin (104),
dynorphin (104), and CCK (105) are expressed in mossy fibers,
and also that NPY is not detectable under normal circumstances
(106). Three of these are strongly increased in epilepsy models,
whereas CCK is down-regulated (34, 35, 107). Dieni et al. (34)
have shown that CCK or met-enkephalin can be stored in the
same granule cells/mossy fibers as BDNF, but not in the same
LDCVs. Our results show that bone fracture apparently is not a
sufficiently strong stimulus to modulate neuropeptide expression
or, alternatively, that a different circuitry is involved. Taken to-
gether, BDNF and neuropeptide molecules synthesized in the
same granule cells can be directed into different LDCVs and are
thus likely separately regulated and can be individually released.
In a pioneering study, Thoenen et al. (108) reported that the

enzyme tyrosine hydroxylase in the adrenal medulla can be trans-
synaptically induced. Similarly, NPY (and dopamine β-hydroxylase)
levels are dramatically and acutely increased in sympathetic
ganglion cells by preganglionic electrical stimulation (109). With
regard to peptides, a possible explanation is that the released
peptide has to be compensated by increased synthesis, which is
reflected by elevated mRNA levels. A similar principle may apply
to BDNF. However, in the present experiments, the increased
BDNF levels in mossy fibers are not paralleled by increased Bdnf
mRNA levels. One possible interpretation is reduced BDNF release,
hypothetically leading to acute cognitive problems, as previously
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described with this model (110). Reduced BDNF release from
mossy fibers has, to our knowledge, not been previously demon-
strated and, if true, the underlying mechanism(s) is unknown. Our
hypothesis of reduced BDNF release is in line with the concept
that increased BDNF levels augment neurogenesis (111, 112);
thus, conversely, attenuated BDNF release/signaling should re-
duce neurogenesis in the dentate subgranular layer, as noted in
our model. This is also consistent with our finding of decreased
c-Fos expression, as c-Fos and BDNF are known to be coregulated
(113–115), as well as with our previous data demonstrating im-
paired long-term potentiation 24 h after tibial surgery (110), ten-
tatively indicating a transient effect of surgery on neuronal
hyperexcitability. However, alternative explanations should be
considered, such as posttranslational regulation of BDNF syn-
thesis (116), and synthesis by already-existing BDNF mRNA
cannot be excluded.
Other groups have used various cognitive tests and associated

postoperative dysfunction with BDNF signaling, but these groups
reported decreased BDNF protein levels (95, 96, 117, 118). Even
if contrasting our increase in BDNF protein, the functional
consequence is the same as ours. Here are some relevant ex-
cerpts from these studies: Fidalgo et al. (96) used an intra-
medullary pin in tibia in mice and recorded decreased BDNF
levels in the hippocampus with Western blotting; Hovens et al.
(117) used immunohistochemistry and found decreased BDNF
levels after 2 and 3 (but not 1) wk in the pyramidal cell layer of
rats; Tian et al. (95) carried out abdominal surgery and found
decreased BDNF levels in the prefrontal cortex with Western
blotting, but only in old mice, and only after 20 mo (not after
6 mo); and Fan et al. (118) exposed the carotid artery of mice
and found decreased BDNF levels using ELISA 5 d after sur-
gery. They also provided evidence for decreased neurogenesis, in
agreement with our findings. In summary, these four and our
studies are characterized by a number of distinct differences that
may explain apparently conflicting results: species, injury model,
analysis method, and time course.

Nerve Injury, Pain, and Cognition. The focus in this study is on
neurochemical changes at the spinal level and in the hippo-
campal formation after bone fracture. The possible relationships
between surgery/nerve injury, pain, and cognition are complex
(6–13) and involve the hippocampus (12, 119, 120). Moreover,
patients already suffering from cognitive deficits are at greater
risk for pain chronicity after a painful event, including surgical
manipulations (121). This vulnerability may have implications for
postoperative recovery, thus predisposing for complications such
as delirium and postoperative cognitive dysfunction. These are
complex multifactorial mechanisms [recently reviewed in Berger
et al. (122)], and a better understanding of the pain-related
signatures after orthopedic surgery may lead to novel strategies
to prevent these complications. However, some evidence does
not support long-term cognitive deficits from surgery in humans
(123, 124), and rodent models to date are limited in differenti-
ating between acute delirium and longer-lasting cognitive de-
cline. It should be also noted that important sex differences have
been described in pain research (125, 126), and our future
studies should take this into account. Overall, because of the
differential role of BDNF described in our model and the im-
portance of this molecule in both pain signaling and memory
function (89, 127), further studies are warranted to ascertain the
circuitry underlying nerve injury, pain, and cognitive impairment.

Materials and Methods
Animals.Wild-type C57BL/6 mice (adult male, 12–14 wk of age) and Cx3cr1GFP/+

knockin mice (128) (adult male, 12 wk of age) were included in this study (SI
Materials and Methods). The experiments were conducted in accordance
with Swedish policy for the use of research animals and were approved by a
local ethical committee (Stockholms Norra djurförsöksetiska nämnd) and the

Institutional Animal Care and Use Committee of Duke University (protocol
A120-15-04).

Surgery. Tibial fracture surgery with intramedullary pinning was performed
essentially as described (22, 110). Complete transection of the sciatic nerve
(axotomy) was performed as previously described (129, 130) (SI Materials
and Methods).

Behavior Tests.Withdrawal threshold was tested in transparent plastic domes
on a metal mesh floor and measured by a logarithmically incremental
stiffness of 0.04, 0.07, 0.16, 0.40, 0.60, 1.0, and 2.0 (g) von Frey Filament
(Stoelting) combined with an up–down method to assess tactile allodynia
(25, 52, 53). The cutoff of a 2.0 hair was selected as the upper limit for testing.
For mechanical hyperalgesia, a safety pin was used, and the duration of paw
withdrawal was recorded (25, 131). Cold allodynia was tested with a drop of
acetone, and the duration of the withdrawal response was recorded (25, 131).

Tissues. For IHC, mice were deeply anesthetized, perfused transcardially with
4% (wt/vol) paraformaldehyde containing picric acid, and processed for
staining as previously described (130, 132). For ISH, mice were deeply anes-
thetized and brains were removed immediately and stored in a −80 °C
freezer after sacrifice (SI Materials and Methods).

In Situ Hybridization. Plasmid DNA containing RNA probes specific for mouse
Bdnf was provided by P. Ernfors, Karolinska Institutet. ISH was performed as
previously described (133) (SI Materials and Methods).

RT-qPCR. Quantitative PCR was run on a StepOnePlus Real-Time PCR System
(Applied Biosystems) (SI Materials and Methods).

Immunohistochemistry. Sections were dried at room temperature for at least
30 min and then incubated with primary antibodies (Table S2) diluted in PBS
containing 0.2% (wt/vol) BSA (Sigma) and 0.03% Triton X-100 (Sigma) in a
humid chamber at 4 °C for 48 h. Immunoreactivities were visualized using
the TSA Plus Kit (PerkinElmer) as previously described (130, 132) (SI Materials
and Methods). Of note, all micrographs showing BDNF staining are based on
the Amgen antibody (Table S2).

Imaging and Analysis. Representative images were acquired from one airy
unit pinhole on an LSM 700 confocal laser-scanning microscope (Carl Zeiss).
Multipanel figures were assembled using Photoshop CS6 software (Adobe
Systems). Quantification and intensity analysis were performed using Adobe
Photoshop CS6 software manually and ImageJ version 1.46 software (Na-
tional Institutes of Health) (SI Materials and Methods).

Statistics. The behavior data of the von Frey filament test (nonparametric
values) are presented as median with range and assessed by Mann–Whitney
test. Behavior data of pinprick and acetone tests, data on immunohisto-
chemistry, and RT-qPCR are presented as mean ± SD or mean ± SEM and
analyzed with unpaired t test or one-way ANOVA for different time points
as indicated in the figure legends by using Prism 6 software (GraphPad
Software). The criterion for statistical significance was P < 0.05.
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